
Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 1

Kursprogramm Teil 1 (14 Stunden)

Erste Schritte

* Aufbau eines Breadboards, Anschluss des Heltec-Boards an den
PC über USB

* Kennenlernen der Programmierumgebung IDE (Sketchbook,
Board-Verwaltung, Bibliothek, serieller Port …)

* Aufbau eines Sketches (setup, loop)
* Ein erstes Programm: Blink mit boardinterner LED
* Eigenständige Modifikation der Blinkfrequenz (z.B.
Morsezeichen, Leuchtfeuer)

* Blinkschaltung mit interner und externer LED

Arbeiten mit dem Steckboard (Breadboard)
Ein Breadboard (Steckplatine) ermöglicht es, schnell und einfach Schaltungen zu testen, ohne dass
gelötet werden muss.
Unser Steckfeld mit insgesamt 830 Kontakten im 2,54-mm-Raster ist wie folgt aufgebaut:

Die oberen und unteren beiden Reihen sind waagerecht über die gesamte Breite des Boards
miteinander verbunden. Sie sind für die Stromversorgung vorgesehen (rot = Plus, blau = Minus).
In den mittleren Reihen sind jeweils 5 Kontakte wie dargestellt miteinander verbunden.

Mit einem solchen Board kann man schnell eine Schaltung erstellen und ausprobieren:

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 2

Die Arduino IDE
Die Arduino IDE (Integrated Development Environment) ist die Entwicklungsumgebung, mit der du
Programme (Sketches) für Arduino-Mikrocontroller schreiben, testen und auf das Board hochladen
kannst.

Datei -> Einstellungen

 Pfad für Sketchbook festlegen
 Editorsprache Deutsch auswählen
 Zusätzliche Boardverwalter-URLs: hier wird der Link des Board-Herstellers eingetragen

Datei -> Beispiele

 fertige Beispielprogramme für häufige Anwendungen

Bearbeiten

 Hier finden sich nützliche Funktionen, um den Programmcode zu bearbeiten

Werkzeuge

 Auswahl des Boards
 Auswahl des Ports
 Upload Speed evtl. anpassen

Hilfe

 Referenz zeigt eine Übersicht der Befehle

Code-Editor

 Hier schreibst du deinen Arduino-Code (Sketch) in der Sprache C/C++.
 Die IDE hebt Schlüsselwörter farbig hervor (Syntax-Highlighting) und nummeriert die Zeilen.

Standardstruktur eines Sketches:

void setup() {
// Wird einmal beim Start ausgeführt
}

void loop() {
// Wird fortlaufend wiederholt

}

In der Kopfzeile

 Überprüfen: Diese Schaltfläche kompiliert den Sketch – also übersetzt den Code in
Maschinensprache.
Dabei wird geprüft, ob Syntaxfehler oder andere Probleme im Code vorhanden sind.

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 3

 Hochladen: Sendet den kompilierten Sketch über USB an den Mikrocontroller.
Der Mikrocontroller führt dann das Programm automatisch aus.

 Fenstermit dem ausgewähltem und verbundenen Board

 Mit dem seriellen Monitor kannst du Textnachrichten vom Arduino empfangen oder senden.
Ideal für Debugging oder Messwerte

Beispiel:

void setup() {
// Wird einmal beim Start ausgeführt
}

void loop() {
Serial.begin(9600);
Serial.println("Hallo Welt!");
delay(1500);
}

 Der Serielle Plotter stellt Werte grafisch dar (z. B. Sensordaten über die Zeit).

Linke Spalte

 Sketchbook: hier liegen unsere erstellten Programme

 Board-Verwaltung: Zahlreiche Boards sind schon in der IDE hinterlegt. Wenn wir eine
zusätzliche Boardverwalter-URL eingetragen haben, erscheint es hier und das zugehörige
Software-Paket kann hier installiert werden.

 Bibliotheksverwalter: hier können zusätzliche Bibliotheken (Libraries) installiert werden,
z. B. für Sensoren, Displays, Motorsteuerungen usw.

Meldungsfenster / Konsole

 Zeigt unten Informationen über den Kompiliervorgang, Warnungen oder Fehlermeldungen.
 Hilfreich zum Debuggen, wenn etwas nicht funktioniert.

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 4

Der erste Scetch: Blink

Durch klicken auf Datei -> Beispiele -> Basics -> Blink wird ein neues IDE-Fenster geöffnet und der
Sketch geladen.

 über „Pfeil rechts“ in der Kopfleiste wird der Sketch auf den Controller geladen

Aufgabe: Ausgabe eines SOS-Signals über die eingebaute Leuchtdiode.

Vorschlag: Dit = 400 ms, Dah = 1200 ms

Info zu SOS als Morsecode
▄ ▄ ▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄ ▄ ▄

Der Code SOS, drei kurz, drei lang, drei kurz (auch als Didididahdahdahdididit ausgesprochen)
wird ohne Pausen zwischen den Buchstaben gesendet.

Ein Dah ist dreimal so lang wie ein Dit.
Die Pause zwischen zwei gesendeten Symbolen ist ein Dit lang.

(Quelle: Wikipedia)

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 5

Einfache Programmierung:

* eine LED ansteuern an Port 7
* Schaltung LED und Widerstand aufbauen
* eine Ampel mit 3 LEDs
* digitaler Eingang: Ein-/Aus-Schaltung mit Taster und LED oder
Buzzer

Arbeitsblatt Blinkschaltung mit interner und externer LED
Aufgabe: Verbinde eine LED mit einem Vorwiderstand von 220 Ohmmit GPIO 7 und bringe sie
abwechselnd mit der internen LED zum Blinken.

220 Ω LED

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 6

Lösungsvorschlag:

#define PinExt 7 // steuert die externe LED

/*
Die folgende setup() Funktion wird nur einmal durchlaufen, wenn das Board mit Strom versorgt oder
der Reset-Taster gedrückt wird
*/
void setup() {
pinMode(LED_BUILTIN, OUTPUT); //definiert den digitalen Pin LED_BUILTIN als Output
pinMode(PinExt, OUTPUT); // definiert den digitalen PinExt als Output
}

/*
Die folgende loop() Funktion wird immer wieder wiederholt
*/

void loop() {
digitalWrite(LED_BUILTIN, HIGH); // schaltet die interne LED ein
digitalWrite(PinExt, LOW); // schaltet die externe LED aus
delay(1000); // wartet eine Sekunde

digitalWrite(LED_BUILTIN, LOW); // schaltet die interne LED aus
digitalWrite(PinExt, HIGH); // schaltet die externe LED an
delay(1000); // wartet eine Sekunde
}

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 7

Grundlagen Programmierung in C:
* Variablen definieren, Abfragen, Schleifen, usw.
* eine Ampel mit 3 LEDs
* Bedarfsampel schalten
* digitaler Eingang: Ein-/Aus-Schaltung mit Taster und LED oder
Buzzer

* eigene Ideen der TeilnehmerInnen (Lea Auto auf Arduinobais mit
Ultraschallsensor)

Arbeitsblatt Ampelschaltung
Aufgabe: Eine Ampel soll nach einem festgelegten Takt geschaltet werden:

5 Sekunden rot, 1 Sekunde rot-gelb, 3 Sekunden grün und 1 Sekunde gelb

rot rot-gelb grün gelb

5 Sekunden 1 Sekunde 3 Sekunden 1 Sekunde

Vorschlag Pinbelegung:

LED rot mit Vorwiderstand 220 Ohm an GPIO 7
LED gelb mit Vorwiderstand 220 Ohm an GPIO 6
LED grün mit Vorwiderstand 220 Ohm an GPIO 5

Lege mit Variablen die Pins fest, an denen die LEDs angeschlossen sind.

Lösungsvorschlag:

const int ROT = 7;
const int GELB = 6;
const int GRUEN = 5;

void setup()
{
pinMode(ROT, OUTPUT);
pinMode(GELB, OUTPUT);
pinMode(GRUEN, OUTPUT);
}

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 8

void loop()
{
digitalWrite(ROT, HIGH); // Schritt 1
digitalWrite(GELB, LOW); // Schritt 2
delay(5000); // Schritt 3
digitalWrite(GELB, HIGH); // Schritt 4
delay(1000); // Schritt 5
digitalWrite(ROT, LOW); // Schritt 6
digitalWrite(GELB, LOW); // Schritt 7
digitalWrite(GRUEN, HIGH); // Schritt 8
delay(3000); // Schritt 9
digitalWrite(GRUEN, LOW); // Schritt 10
digitalWrite(GELB, HIGH); // Schritt 11
delay(1000); // Schritt 12
}

Arbeitsblatt Ampelschaltung mit Fußgängertaster
Aufgabe: Wenn jemand den Taster drückt, soll:

1. Die Autoampel von Grün → Gelb → Rot schalten.

2. Die Fußgängerampel auf Grün gehen.

3. Nach ein paar Sekunden wird sie wieder Rot, und die Autoampel schaltet zurück auf Grün.

Lösungsvorschlag:

Komponente Pin Beschreibung
Auto Rot 7 LED mit 220 Ω Widerstand
Auto Gelb 6 LED mit 220 Ω Widerstand
Auto Grün 5 LED mit 220 Ω Widerstand
Fußgänger Rot 4 LED mit 220 Ω Widerstand
Fußgänger Grün 3 LED mit 220 Ω Widerstand
Taster 2 gegen GND, interner Pullup aktiviert

//

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 9

Pins definieren

const int ROT_AUTO = 7;
const int GELB_AUTO = 6;
const int GRUEN_AUTO = 5;
const int ROT_FUSS = 4;
const int GRUEN_FUSS = 3;
const int TASTER = 2;

void setup()
{
pinMode(ROT_AUTO, OUTPUT);
pinMode(GELB_AUTO, OUTPUT);
pinMode(GRUEN_AUTO, OUTPUT);
pinMode(ROT_FUSS, OUTPUT);
pinMode(GRUEN_FUSS, OUTPUT);
pinMode(TASTER, INPUT_PULLUP); // Taster schaltet gegen GND

// Anfangszustand: Autos grün, Fußgänger rot
digitalWrite(GRUEN_AUTO, HIGH);
digitalWrite(ROT_FUSS, HIGH);
}

void loop()
{
if (digitalRead(TASTER) == LOW) // Warten bis Taster gedrückt wird (aktiv LOW)
{
fussgaengerPhase(); // Funktion starten
}
}

void fussgaengerPhase() // Funktion für die Fußgängerphase
{
// Autos auf Rot schalten
digitalWrite(GRUEN_AUTO, LOW);
digitalWrite(GELB_AUTO, HIGH);
delay(1000);
digitalWrite(GELB_AUTO, LOW);
digitalWrite(ROT_AUTO, HIGH);

// Sicherheitszeit
delay(1000);

// Fußgänger Grün
digitalWrite(ROT_FUSS, LOW);
digitalWrite(GRUEN_FUSS, HIGH);
delay(5000);

// Fußgänger wieder Rot
digitalWrite(GRUEN_FUSS, LOW);
digitalWrite(ROT_FUSS, HIGH);

// Sicherheitszeit

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 10

delay(1000);

// Autos wieder auf Grün
digitalWrite(ROT_AUTO, LOW);
digitalWrite(GELB_AUTO, HIGH);
delay(1000);
digitalWrite(GELB_AUTO, LOW);
digitalWrite(GRUEN_AUTO, HIGH);
}

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 11

Programmierung Eltec-Board und OLED
* Bibliotheken einbinden
* Welche Sensoren gibt es? Wie funktioniert ein Sensor?
* Was ist ein Datenbus und wie funktioniert ein I2C Bus?
* Verteilen der Sensoren und Breadboard-Verkabelung

* Temperatur- und Luftfeuchtesensor: Messwerte auf dem OLED
und I2c -Bus begonnen

Benötigte Libraries

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 12

Wie überträgt ein Sensor seine gemessenen Daten?
Es gibt heutzutage eine Vielzahl von Sensoren, die analoge Messwerte erfassen, z.B. Temperatur,
Luftdruck, Windstärke, Helligkeit, Abstand, Drehzahl usw.

Die Umwandlung in digitale Werte erfolgt durch sogenannte Analog-to-Digital Converter
(ADC = Analog-Digital-Wandler).
Diese Daten kann dann ein Mikrocontroller verarbeiten.

Warum ist ADC wichtig?

 Viele Sensoren liefern analoge Signale (z.B. Temperatur, Licht, Druck).
 Der Mikrocontroller arbeitet digital, also mit Zahlen.
 Der ADC übersetzt das analoge Signal in eine digitale Zahl, die dann weiterverarbeitet werden

kann.
 In vielen Sensoren ist bereits ein ADC eingebaut, so dass sie einfach in digitalen Systemen

verwendet werden können.

Beispiel: Ein Temperatursensor gibt eine Spannung von 0 bis 3,3 V aus, die der ADC in einen digitalen
Wert von z.B. 0 bis 1023 (bei 10-Bit-Auflösung) umwandelt. So kann der Mikrocontroller die
Temperatur berechnen.

Wie funktioniert ein ADC technisch?

Ein ADC wandelt ein kontinuierliches analoges Signal (z.B. Spannung) in einen digitalen Wert um.
Das passiert in mehreren Schritten:

 Abtastung (Sampling): Der ADC misst in regelmäßigen Abständen den aktuellen
Spannungswert am Eingang.

 Quantisierung: Die gemessene analoge Spannung wird in einen digitalen Wert umgewandelt.

Die Übertragung der
digitalen Werte zumMikrocontroller
erfolgt oft über einen I2C Bus.

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 13

Der I²C Bus

Sender/Empfänger (Master & Slave)

Zeitachse (Takt SCL):

SCL: __/‾‾‾__/‾‾‾__/‾‾‾__ (Taktgeber, steuert wann Daten gelesen werden)

SDA: __1__0__1__1__0__0__1__ (Datenbits, synchron zum Takt)

Erklärung:

- Der Master sendet die Adresse des Slaves, dann Daten oder fordert Daten an.
- Die Daten auf SDA ändern sich nur, wenn SCL niedrig ist.
- Die Daten werden bei der steigenden Flanke von SCL (wenn SCL von 0 auf 1 geht) gelesen.
- Start und Stop sind spezielle Signale auf SDA, während SCL HIGH ist

Vorteil

 Es können mehrere Geräte an denselben Bus angeschlossen werden (z. B. Sensoren, Displays).
 Jedes Gerät hat eine eigene Adresse.
 Die Kommunikation wird vomMaster-Gerät gesteuert (Takt und Start/Stop).
 Der Bus ist bidirektional: Daten können in beide Richtungen fließen, aber immer nur ein

Datenpaket nach dem anderen.

Beispiel: Arduino als I²C-Master, der Daten an einen Slave sendet

Was du brauchst:
 Arduino (z. B. Arduino Uno)
 Ein I²C-Gerät oder ein zweiter Arduino als Slave
 Verbindung über SDA (Pin A4 beim Uno) und SCL (Pin A5 beim Uno)
 Gemeinsame Masse (GND)

Einfacher Arduino-Sketch:

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 14

Erklärung:
 Wire.begin() startet den I²C-Bus als Master.
 beginTransmission(8) sagt, dass Daten an das Gerät mit Adresse 8 gesendet werden.
 Wire.write("Hallo!") sendet die Nachricht.
 endTransmission() beendet die Übertragung.
 Im Loop wird die Nachricht jede Sekunde gesendet.

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 15

So sieht ein einfaches Slave-Programm aus:

Erklärung:
 Wire.begin(8) macht den Arduino zum Slave mit Adresse 8.
 onReceive(receiveEvent) registriert eine Funktion, die aufgerufen wird, wenn Daten

ankommen.
 In receiveEvent werden die empfangenen Bytes gelesen und ausgegeben.

So kannst du es testen:
 Verbinde zwei Arduinos mit SDA, SCL und GND.
 Lade das Master-Programm auf einen Arduino.
 Lade das Slave-Programm auf den anderen Arduino.
 Öffne den Serial-Monitor des Slaves: Du solltest „Hallo!“ jede Sekunde sehen.

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 16

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 17

Wiederholungen
* Kurze Wiederholung I2C Bus und Sensoren
* Wiederholung: Ausgabe von Text und Variablen im seriellen

Monitor (Ausgabe_SeriellerMonitor.ino)
* Wiederholung: Ausgabe und Positionierung von Text auf dem
OLED Display (Ausgabe_OLED1.ino)

* Verkabelung AHT30 auf dem Breadboard
* Ausgabe der Sensordaten auf dem seriellen Monitor

(AHT_seriell.ino)
* Ausgabe und Positionierung von Text auf dem OLED Display
(Ausgabe_OLED.ino)

* Programmablauf erklären
* Neu zu entwickelnder Sketch: Ausgabe der Sensorwerte auf dem
OLED Display

Sketch: AHT_seriell.ino

/**
* Demo AHT-Sensor mit Heltec WiFi LoRa 32 (v3) (AHT_seriell.ino)
*
* angepasst 12-2025 von ows-dieboe
*
***/
// Library für Sensor einbinden und Objekt anlegen
#include <Adafruit_AHTX0.h>
Adafruit_AHTX0 aht; // für alle AHT-Typen

// Pins i2c Bus für Sensor
#define PIN_SDA2 40 // Pins sind Boardbezogen
#define PIN_SCL2 41

void setup() {
// Sensor initialisieren
bool status = Wire1.begin(PIN_SDA2, PIN_SCL2); // SDA + SCL übergeben für

"Wire1", da "Wire" von OLED genutzt wird!
Serial.print("wire1 status: ");
Serial.println(status);

Serial.begin(115200);
Serial.println("Adafruit AHT demo!");

if (!aht.begin(&Wire1)) {

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 18

Serial.println("Could not find AHT? Check wiring");
while (1) delay(10);

}
Serial.println("AHT found");

}

void loop() {
sensors_event_t humidity, temp;
aht.getEvent(&humidity, &temp); // populate temp and humidity objects with fresh

data
Serial.print("Temperature: ");
Serial.print(temp.temperature);
Serial.println(" degrees C");
Serial.print("Humidity: ");
Serial.print(humidity.relative_humidity);
Serial.println("% rH");

delay(5000);
}

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 19

Ausgabe_OLED.ino

Ausgabe von Text und Variablen auf dem seriellen Monitor

Fragen:

Warum wird anzahl VOR Setup() definiert?

Was ist der Unterschied zwischen Serial.print und Serial.println?

Warum wird anzahl mit der Function String() ausgegeben?

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

Quelle: CS, DB, NS Status: in Arbeit Stand: 29.12.2025 20

Wie verhält sich die Ausgabe, wenn Du die Bedingung in der Zeile 27 auf anzahl=6 prüfst
und warum?

https://github.com/ShotokuTech/HeltecLoRa32v3_I2C/blob/main/heltec wifi lora 32 v3 pinout.jpg

	Aufgabe: Verbinde eine LED mit einem Vorwiderstand
	 rot
	rot-gelb
	 grün
	 gelb
	5 Sekunden
	1 Sekunde
	3 Sekunden
	1 Sekunde
	Vorschlag Pinbelegung:
	LED rot mit Vorwiderstand 220 Ohm an GPIO 7LED ge
	Lege mit Variablen die Pins fest, an denen die LE

	Aufgabe: Wenn jemand den Taster drückt, soll:
	1.Die Autoampel von Grün → Gelb → Rot schalten.
	2.Die Fußgängerampel auf Grün gehen.
	3.Nach ein paar Sekunden wird sie wieder Rot, und di

